物理学报Issue(22):1-10,10.DOI:10.7498/aps.64.224214
利用高阶拉盖尔-高斯横模精确测量法布里-珀罗腔内原子的运动轨迹∗
Precision measurement of single-atom tra jectories in higher-order Laguerre-Gaussian transverse mo des of a Fabry-Perot cavity
摘要
Abstract
A coupled quantum system composed of cavity field and atoms is one of the main research contents of cavity quantum electrodynamics. It can be used to realize single atom manipulation and measurement, and has important significance for studying the interaction between light and the atom, preparing quantum states and quantum entanglement. Current research work mainly focuses on two aspects. One is to achieve the atom trapping via the feedback control of the trapping laser intensity. The other is to measure the single atomic motion in a Fabry-Perot cavity by using Hermite-Gaussian transverse modes. The detection of the atomic trajectories has been realized via the observation of transmission spectra of the strong coupling system composed of cold atoms and Hermite-Gaussian transverse modes in a Fabry-Perot cavity. In order to observe the atomic motion trajectories in the cavity, we theoretically study the transmission spectrum of a strong coupling system composed of cold atoms and Laguerre-Gaussian transverse modes in a Fabry-Perot cavity in this paper. We calculate the relationship between the coupling coefficient and the mode number of Laguerre-Gaussian transverse modes. The result shows that with the increase of Laguerre-Gaussian transverse mode number, the maximum coupling coefficient between the atoms and cavity fields is almost unchanged, so the contrast of the detected spectrum is nearly independent of the mode number. Analysis shows that Laguerre-Gaussian transverse mode provides more abundant information about atomic motion trajectory than Hermite-Gaussian transverse mode. The field distribution of Laguerre-Gaussian transverse mode is ring-shaped. Owing to the ring shape, the atoms dropped at different positions experience different electric field intensities, and the detected transmission spectra are changed. Therefore, we can implement the high precision distinguishment of the atomic trajectories by observing the features of the transmission spectra such as the number of the transmission peaks and their positions. Furthermore, a small deviation of the atomic motion trajectories, on the edges of the rings of the electric field, may induce great change in transmission spectrum, and then we can very accurately detect the atomic motion around these positions.关键词
光学微腔/拉盖尔-高斯光/原子轨迹Key words
microcavity/Laguerre-Gaussian light/atomic trajectories引用本文复制引用
王延娜,赵迪,方爱平,蒋臣威,高韶燕,李福利..利用高阶拉盖尔-高斯横模精确测量法布里-珀罗腔内原子的运动轨迹∗[J].物理学报,2015,(22):1-10,10.基金项目
国家自然科学基金(批准号:11374239,21203144,11074199)和国家教育部博士点专项基金(批准号:20120201120056)资助的课题.* Project supported by the Natural Science Foundation of China (Grants Nos.11374239,21203144,11074199) and the Doctoral Fund of Ministry of Education of China (Grant No.20120201120056) (批准号:11374239,21203144,11074199)