| 注册
首页|期刊导航|微型机与应用|基于密度的优化初始聚类中心K-means算法研究

基于密度的优化初始聚类中心K-means算法研究

何佳知 谢颖华

微型机与应用Issue(19):17-19,23,4.
微型机与应用Issue(19):17-19,23,4.

基于密度的优化初始聚类中心K-means算法研究

Study on K-means algorithm of optimized initial clustering centers based on density

何佳知 1谢颖华1

作者信息

  • 1. 东华大学 信息科学与技术学院,上海 201620
  • 折叠

摘要

Abstract

Aiming at the problem of the traditional K-means algorithm which generate its initial centers randomly from the data set, a method is proposed to optimize the initial center points through computing the density of objects. The algorithm computes the density of the area where the object belongs to, and then select K objects as the initial centers which has the highest density and has threshold distance to each other in high-density region. Also, the noise points in low-density region are treated separately. The experimental results demonstrate that the improved algorithm can get better clustering, and eliminate the sensitivity to the initial start centers.

关键词

聚类/K-means 算法/密度/聚类中心/噪声点

Key words

clustering/K-means algorithm/density/clustering center/noise points

分类

信息技术与安全科学

引用本文复制引用

何佳知,谢颖华..基于密度的优化初始聚类中心K-means算法研究[J].微型机与应用,2015,(19):17-19,23,4.

微型机与应用

2097-1788

访问量0
|
下载量0
段落导航相关论文