| 注册
首页|期刊导航|微型机与应用|基于贝叶斯网络和多传感器的障碍物识别系统

基于贝叶斯网络和多传感器的障碍物识别系统

张超 李磊民

微型机与应用Issue(19):80-82,85,4.
微型机与应用Issue(19):80-82,85,4.

基于贝叶斯网络和多传感器的障碍物识别系统

Obstacle recognition system based on Bayesian network and multi-sensor

张超 1李磊民2

作者信息

  • 1. 西南科技大学 信息工程学院,四川 绵阳 621010
  • 2. 西南科技大学 国防科技学院,四川 绵阳 621010
  • 折叠

摘要

Abstract

Because of the obstacle information′s uncertainty, incompleteness and the short of Bayesian classifier that it is sensitive for incomplete information, the paper selects a Bayesian network classification scheme. When building the Bayesian network model, this program using Bayesian inference which can improve the adaptability of the Bayesian network. The classification system relies on a research institute unmanned vehicle project. Real-time information is obtained via laser radar and CCD sensor that provides data to the network model.

关键词

无人车/贝叶斯网络/障碍物/分类

Key words

unmanned vehicle/Bayesian network/obstacle/classification

分类

计算机与自动化

引用本文复制引用

张超,李磊民..基于贝叶斯网络和多传感器的障碍物识别系统[J].微型机与应用,2015,(19):80-82,85,4.

微型机与应用

2097-1788

访问量0
|
下载量0
段落导航相关论文