| 注册
首页|期刊导航|微型机与应用|改进粒子群优化BP神经网络的旅游客流量预测

改进粒子群优化BP神经网络的旅游客流量预测

于明涛 叶晓彤

微型机与应用Issue(21):51-54,4.
微型机与应用Issue(21):51-54,4.

改进粒子群优化BP神经网络的旅游客流量预测

Prediction for tourist traffic based on improved particle swarm optimization BP neural network

于明涛 1叶晓彤2

作者信息

  • 1. 四川理工学院 自动化与电子信息学院,四川 自贡 643000
  • 2. 四川理工学院 网络信息管理中心,四川 自贡 643000
  • 折叠

摘要

Abstract

Tourist flow is influenced by many factors. The traditional time series prediction model cannot describe the laws of the forecasted object. Artificial intelligence methods such as BP neural network, the choice of its structure relies too much on experience. Based on these above, the improved particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. It uses nonlinear decreasing inertia factor to improve the performance of particle swarm optimization. The prediction model is applied to the flow of Zigong Lantern Festival forecast analysis. Through simulation of 150 sets of training samples and 50 groups of test samples, the result shows that the improved method improves the accuracy of the prediction, and involves less parameters, simple and effective.

关键词

旅游客流量预测/BP 神经网络/粒子群算法/非线性递减

Key words

tourist flow forecast/BP neural network/particle swarm algorithm/nonlinear decreasing

分类

计算机与自动化

引用本文复制引用

于明涛,叶晓彤..改进粒子群优化BP神经网络的旅游客流量预测[J].微型机与应用,2015,(21):51-54,4.

基金项目

四川省智慧旅游研究基地重点项目 ()

微型机与应用

2097-1788

访问量0
|
下载量0
段落导航相关论文