| 注册
首页|期刊导航|微型机与应用|粗糙集属性约简在文本分类中的性能研究

粗糙集属性约简在文本分类中的性能研究

赵靖 皮建勇

微型机与应用Issue(21):81-84,4.
微型机与应用Issue(21):81-84,4.

粗糙集属性约简在文本分类中的性能研究

Study on performance of rough set attribute reduction in text categorization

赵靖 1皮建勇2

作者信息

  • 1. 贵州大学 计算机科学与技术学院,贵州 贵阳 550025
  • 2. 贵州大学 云计算与物联网研究中心,贵州 贵阳 550025
  • 折叠

摘要

Abstract

Feature space dimension can reach tens of thousands in text auto classification. Dimension is still large after feature selection using the method of information measure such as document frequency , information gain and mutual information. Reducing the threshold or the minimum number of selected features may result in classification performance degradation. The solution for this situation is implemented with the attribute reduction again based on rough set theory. Experiment indicates that this method can effectively reduce the feature dimension, as well as ensure the performance of classification.

关键词

文本分类/粗糙集/属性约简

Key words

text classfication/rough set/attribute reduction

分类

计算机与自动化

引用本文复制引用

赵靖,皮建勇..粗糙集属性约简在文本分类中的性能研究[J].微型机与应用,2015,(21):81-84,4.

微型机与应用

2097-1788

访问量0
|
下载量0
段落导航相关论文