| 注册
首页|期刊导航|现代电子技术|基于遗传优化RBF神经网络的电动负载模拟器控制

基于遗传优化RBF神经网络的电动负载模拟器控制

魏全增 陈机林 高强 王超

现代电子技术2015,Vol.38Issue(21):113-117,5.
现代电子技术2015,Vol.38Issue(21):113-117,5.DOI:10.16652/j.issn.1004-373x.2015.21.030

基于遗传优化RBF神经网络的电动负载模拟器控制

Control of electric-driven load simulator based on genetic optimization RBF neural network

魏全增 1陈机林 1高强 1王超1

作者信息

  • 1. 南京理工大学 机械工程学院,江苏 南京 210094
  • 折叠

摘要

Abstract

For the complex nonlinearities of friction,clearance,elastic deformation,time-varying performance of the target parameters and position disturbance are existed in electric-driven load simulator of the gun control system,the conventional con-trol method can′t achieve the good static and dynamic performance indexes. In combination with the system composition and working principle of the electric-driven load simulator,the loading mathematical model was established. The RBF neural net-work controller(RBFNNC)was designed by using the position control signal of the gun control system to conduct with feedfor-ward compensation. The parameters of the controller′s weight,nodes and center vector are optimized by the improved genetic al-gorithm. The experimental results show that this control strategy can restrain the extra torque effectively,and ensure the control precision and stability when the system is loading in static or dynamic state.

关键词

电动负载模拟器/RBF神经网络/遗传算法/多余力矩

Key words

electric-driven load simulator/RBF neural network/genetic algorithm/extra torque

分类

信息技术与安全科学

引用本文复制引用

魏全增,陈机林,高强,王超..基于遗传优化RBF神经网络的电动负载模拟器控制[J].现代电子技术,2015,38(21):113-117,5.

基金项目

国家自然科学基金项目(51305205) (51305205)

现代电子技术

OA北大核心CSTPCD

1004-373X

访问量2
|
下载量0
段落导航相关论文