| 注册
首页|期刊导航|智能系统学报|双蝙蝠群智能优化的多模盲均衡算法

双蝙蝠群智能优化的多模盲均衡算法

郭业才 吴华鹏

智能系统学报2015,Vol.10Issue(5):755-761,7.
智能系统学报2015,Vol.10Issue(5):755-761,7.DOI:10.11992/tis.201407031

双蝙蝠群智能优化的多模盲均衡算法

Multi-modulus blind equalization algorithm based on double bat swarms intelligent optimization

郭业才 1吴华鹏2

作者信息

  • 1. 南京信息工程大学 江苏省气象探测与信息处理重点实验室,江苏 南京 210044
  • 2. 江苏省大气环境与装备技术协同创新中心,江苏 南京210044
  • 折叠

摘要

Abstract

Aiming at the defects of the large surplus mean square error and slow convergence speed in equalizing multi-modulus QAM signals by utilizing constant modulus algorithm ( CMA) , a multi-modulus blind equalization al-gorithm based on double bat swarms intelligent optimization ( DBSIO-MMA) is proposed. In the algorithm, a group of optimal position vectors attained by independent global optimization of two bat swarms are respectively taken as the real and imaginary parts of the initialized optimal weight vector, so as to improve convergence speed and reduce surplus mean square error. The simulation results show that the features of fast convergence speed and high success rate of the bat algorithm ( BA) in global search are fully reflected in the proposed algorithm. Compared with the CMA, multi-modulus blind equalization algorithm ( MMA) , particle swarm optimization based MMA ( PSO-MMA) and bat swarms intelligent optimization based MMA ( BA-MMA ) , the proposed algorithm has faster convergence speed and smaller mean square error.

关键词

常模盲均衡算法/多模盲均衡算法/蝙蝠算法/全局最优位置/最优权向量

Key words

constant modulus algorithm ( CMA )/multi-modulus blind equalization algorithm ( MMA )/bat algo-rithm ( BA)/global optimal position/optimal weight vector

分类

信息技术与安全科学

引用本文复制引用

郭业才,吴华鹏..双蝙蝠群智能优化的多模盲均衡算法[J].智能系统学报,2015,10(5):755-761,7.

基金项目

江苏省高校自然科学基金重大资助项目(13KJA510001) (13KJA510001)

高校科研成果产业化推进工程资助项目( JHB 2012-9) ( JHB 2012-9)

全国优秀博士论文作者专项资金资助项目(200753) (200753)

江苏省高校"信息与通信工程"优势学科建设工程资助项目(2014). (2014)

智能系统学报

OA北大核心CSCDCSTPCD

1673-4785

访问量0
|
下载量0
段落导航相关论文