信阳师范学院学报(自然科学版)Issue(4):482-485,4.DOI:10.3969/j.issn.1003-0972.2015.04.005
广义神经传播方程H1-Galerkin低阶非协调混合有限元的超收敛分析
Superconvergence Analysis of the Lowest Order H 1 -Galerkin Nonconforming Mixed Finite Element for Generalized Nerve Conduction Type Equations
摘要
Abstract
By employing EQrot element and zero‐order Raviart‐Thomas element , H 1 ‐Galerkin noncon‐forming mixed finite element scheme was discussed for a class of generalized nerve conduction type equations under semi‐discrete .The existence and uniqueness of the solution about the approximation scheme were proved . Based on the special characters of EQrot element ,the known high accuracy analysis of zero‐order R‐T element and the post processing technique ,the superclose and superconvergence properties for u in H 1 ‐norm and p→ in H (div ;Ω)‐norm were obtained for the above scheme .关键词
广义神经传播方程/H1-Galerkin 方法/低阶非协调混合元/半离散与全离散Key words
generalized nerve conduction type equations/H 1-Galerkin method/low order nonconforming mixed finite element/superclose and superconvergence分类
数理科学引用本文复制引用
周树克,王婷..广义神经传播方程H1-Galerkin低阶非协调混合有限元的超收敛分析[J].信阳师范学院学报(自然科学版),2015,(4):482-485,4.基金项目
国家自然科学基金项目(11271340);河南省高等学校重点科研项目 ()