燕山大学学报Issue(3):254-259,6.DOI:10.3969/j.issn.1007-791X.2013.03.013
基于积分核级数展开的多极边界元法及其截断误差分析
FM-BEM based on series expansion of integral kernel and its error analysis
摘要
Abstract
A kind of Fast Multipole Boundary Element Method (FM-BEM) based on series expansion of integral kernel is proposed to solve two-dimensional (2-D) Helmholtz equation problems in this paper. A theorem of multipole expansion is derived and proved for the fundamental solution. Numerical formulas and computational process of the FM-BEM are obtained for 2-D Hel-mholtz equation problems. The truncation error is analyzed and proved to be controlled by a truncation number . A refined ap-proximate expression of is finally derived for practical science and engineering computation.关键词
多极边界元法/Helmholtz 方程/误差分析/截断项数Key words
FM-BEM/Helmholtz equation/error analysis/truncation number分类
数理科学引用本文复制引用
于春肖,苑润浩,于海源,王慧倩..基于积分核级数展开的多极边界元法及其截断误差分析[J].燕山大学学报,2013,(3):254-259,6.基金项目
河北省自然科学基金资助项目(A2011203020);河北省高等学校科学技术研究重点资助项目(ZD2010116);秦皇岛市科学技术研究与发展计划项目 ()