| 注册
首页|期刊导航|燕山大学学报|基于积分核级数展开的多极边界元法及其截断误差分析

基于积分核级数展开的多极边界元法及其截断误差分析

于春肖 苑润浩 于海源 王慧倩

燕山大学学报Issue(3):254-259,6.
燕山大学学报Issue(3):254-259,6.DOI:10.3969/j.issn.1007-791X.2013.03.013

基于积分核级数展开的多极边界元法及其截断误差分析

FM-BEM based on series expansion of integral kernel and its error analysis

于春肖 1苑润浩 1于海源 1王慧倩1

作者信息

  • 1. 燕山大学 理学院,河北 秦皇岛 066004
  • 折叠

摘要

Abstract

  A kind of Fast Multipole Boundary Element Method (FM-BEM) based on series expansion of integral kernel is proposed to solve two-dimensional (2-D) Helmholtz equation problems in this paper. A theorem of multipole expansion is derived and proved for the fundamental solution. Numerical formulas and computational process of the FM-BEM are obtained for 2-D Hel-mholtz equation problems. The truncation error is analyzed and proved to be controlled by a truncation number . A refined ap-proximate expression of is finally derived for practical science and engineering computation.

关键词

多极边界元法/Helmholtz 方程/误差分析/截断项数

Key words

FM-BEM/Helmholtz equation/error analysis/truncation number

分类

数理科学

引用本文复制引用

于春肖,苑润浩,于海源,王慧倩..基于积分核级数展开的多极边界元法及其截断误差分析[J].燕山大学学报,2013,(3):254-259,6.

基金项目

河北省自然科学基金资助项目(A2011203020);河北省高等学校科学技术研究重点资助项目(ZD2010116);秦皇岛市科学技术研究与发展计划项目 ()

燕山大学学报

OACSTPCD

1007-791X

访问量0
|
下载量0
段落导航相关论文