计算机工程与应用2015,Vol.51Issue(24):8-11,4.DOI:10.3778/j.issn.1002-8331.1508-0168
格值逻辑命题逻辑(Ln × L2)P( X )中广义文字的α-归结性
α-resolvability of generalized literals in lattice-valued propositional logic (Ln × L2)P( X )
摘要
Abstract
Because of the complexity of generalized literals structure in lattice-valued logic, it leads to difficult to judge two generalized literals whether form resolution pair or not. According to particular structure of truth valued range Ln × L2 and the characteristic of resolution levelα, the resolvability of between 0-IESF and other generalized literals in lattice-valued propositional logic system (Ln × L2)P(X ) based on one class of lattice implication algebras Ln × L2 , and the determination conditions on that two generalized literals can form resolution pair.关键词
自动推理/归结域/格值逻辑/格蕴涵代数Key words
automated reasoning/resolution fields/lattice-valued logic/lattice implication algebras分类
数理科学引用本文复制引用
张家锋,曹发生..格值逻辑命题逻辑(Ln × L2)P( X )中广义文字的α-归结性[J].计算机工程与应用,2015,51(24):8-11,4.基金项目
国家自然科学基金(No.61175055,No.61305074) (No.61175055,No.61305074)
贵州省科学技术基金项目(No.LKB[2012]02) (No.LKB[2012]02)
贵州民族大学引进人才项目(No.15XRY006). (No.15XRY006)