| 注册
首页|期刊导航|计算机工程与应用|基于ELM-LSSVM的网络流量预测

基于ELM-LSSVM的网络流量预测

陈鸿星

计算机工程与应用2015,Vol.51Issue(24):73-77,5.
计算机工程与应用2015,Vol.51Issue(24):73-77,5.DOI:10.3778/j.issn.1002-8331.1312-0119

基于ELM-LSSVM的网络流量预测

Network traffic prediction based on Extreme Learning Machine and Least Square Support Vec-tor Machine

陈鸿星1

作者信息

  • 1. 江西师范大学 数学与信息科学学院,南昌 330022
  • 折叠

摘要

Abstract

In order to improve the prediction accuracy, aiming at the defects of the over fitting in extreme learning machine, this paper proposes a novel network traffic prediction model based on Extreme Learning Machine and Least Square Support Vector Machine(ELM-LSSVM). The phase space reconstruction is used to build learning samples of network flow and then the training samples are input to ELM and are learnt in which the Least Squares Support Vector Machine are intro-duced into Extreme Learning Machine. The simulation experiment is carried out to test the performance. The results show that the proposed model has improved the prediction accuracy of network traffic and has strong practical application value.

关键词

网络流量/极限学习机/最小二乘支持向量机/相空间重构

Key words

network traffic/Extreme Learning Machine(ELM)/Least Square Support Vector Machine(LSSVM)/phase space reconstruction

分类

信息技术与安全科学

引用本文复制引用

陈鸿星..基于ELM-LSSVM的网络流量预测[J].计算机工程与应用,2015,51(24):73-77,5.

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文