| 注册
首页|期刊导航|计算机工程与应用|基于联合滤波的聚类稀疏表示图像去噪算法

基于联合滤波的聚类稀疏表示图像去噪算法

高美凤 王晨

计算机工程与应用2015,Vol.51Issue(24):180-185,6.
计算机工程与应用2015,Vol.51Issue(24):180-185,6.DOI:10.3778/j.issn.1002-8331.1312-0166

基于联合滤波的聚类稀疏表示图像去噪算法

Image denoising via clustering-based sparse representation over collaborative filter

高美凤 1王晨1

作者信息

  • 1. 江南大学 轻工过程先进控制教育部重点实验室,江苏 无锡 214122
  • 折叠

摘要

Abstract

For the influence of noise for clustering in non-local means denoising algorithm, a denoising algorithm based on collaborative filter and clustering-based sparse representation is presented. It employs Wiener filter and Butterworth filter to extract high-frequency components on the noisy image, and simultaneously reduces the influence of noise for clustering. The high-frenquency image blocks that are extracted from the noisy image are clustered by using the non-local means denoising. The adaptive ability of dictionary is enhanced because each block runs dictionary learning independently. Then structured dictionaries are learned by using several dictionary update cycles-based K-SVD instead of K-SVD. It rein-forces the descriptive ability of dictionary. The experiments show that the modified algorithm, which is compared with the traditional K-SVD denoising algorithm, can protect the information of image structure effectively and promote the result of denoising greatly.

关键词

非局部去噪/稀疏表示/联合滤波/字典学习

Key words

non-local denoising/sparse representation/collaborative filter/dictionary learning

分类

信息技术与安全科学

引用本文复制引用

高美凤,王晨..基于联合滤波的聚类稀疏表示图像去噪算法[J].计算机工程与应用,2015,51(24):180-185,6.

基金项目

国家自然科学基金(No.61104092) (No.61104092)

江苏省产学研前瞻性联合研究项目(No.BY2012066). (No.BY2012066)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文