| 注册
首页|期刊导航|物理学报|一个分数阶忆阻器模型及其简单串联电路的特性∗

一个分数阶忆阻器模型及其简单串联电路的特性∗

俞亚娟 王在华

物理学报Issue(23):238401-1-238401-9,9.
物理学报Issue(23):238401-1-238401-9,9.DOI:10.7498/aps.64.238401

一个分数阶忆阻器模型及其简单串联电路的特性∗

A fractional-order memristor mo del and the fingerprint of the simple series circuits including a fractional-order memristor

俞亚娟 1王在华2

作者信息

  • 1. 南京航空航天大学,机械结构力学与控制国家重点实验室,南京 210016
  • 2. 常州大学数理学院,常州 213164
  • 折叠

摘要

Abstract

A memristor is a nonlinear resistor with time memory. The resistance of a classical memristor at a given time is represented by the integration of all the full states before the time instant, a case of ideal memory without any loss. Recent studies show that there is a memory loss of the HP TiO2 linear model, in which the width of the doped layer of HP TiO2 model cannot be equal to zero or the whole width of the model. Based on this observation, a fractional-order HP TiO2 memristor model with the order between 0 and 1 is proposed, and the fingerprint analysis of the new fractional-order model under periodic external excitation is made, thus the formula for calculating the area of hysteresis loop is obtained. It is found that the shape and the area enclosed by the hysteresis loop depend on the order of the fractional-order derivative. Especially, for exciting frequency being bigger than 1, the memory strength of the memristor takes its maximal value when the order is a fractional number, not an integer. Then, the current-voltage characteristics of the simple series one-port circuit composed of the fractional-order memristor and the capacitor, or composed of the fractional-order memristor and the inductor are studied separately. Results demonstrate that at the periodic excitation, the memristor in the series circuits will have capacitive properties or inductive properties as the fractional order changes.

关键词

忆阻器/滞回线/记忆损失/分数阶导数

Key words

memristor/hysteresis loop/memory loss/fractional-order derivative

引用本文复制引用

俞亚娟,王在华..一个分数阶忆阻器模型及其简单串联电路的特性∗[J].物理学报,2015,(23):238401-1-238401-9,9.

基金项目

国家自然科学基金(批准号11372354)资助的课题 (批准号11372354)

物理学报

OA北大核心CSCDCSTPCD

1000-3290

访问量0
|
下载量0
段落导航相关论文