| 注册
首页|期刊导航|计算机应用研究|基于机器学习的 MapReduce 资源调度算法

基于机器学习的 MapReduce 资源调度算法

于倩 蔚承建 王开 朱林军

计算机应用研究Issue(1):111-114,4.
计算机应用研究Issue(1):111-114,4.DOI:10.3969/j.issn.1001-3695.2016.01.026

基于机器学习的 MapReduce 资源调度算法

Resource scheduling algorithm for MapReduce based on machine learning

于倩 1蔚承建 1王开 2朱林军1

作者信息

  • 1. 南京工业大学 电子与信息工程学院,南京 210009
  • 2. 东南大学 信息科学与工程学院,南京 210018
  • 折叠

摘要

Abstract

To solve the problem that a map and shuffle optimization model allowed overlapping phases in MapReduce was lack of adaptability,this paper proposed a resource scheduling algorithm based on this model of machine learning,it used Bayesian classifier based on the degree of matching the operating system resource requirements and system environment for job schedu-ling,and then updated the classification continuously,so that it had adaptability,considering the overlap phase map and shuf-fle.The simulation experiments verify that the solution can improve the performance of MapReduce system,get a better ave-rage response time.

关键词

MapReduce/重叠阶段/自适应性/机器学习/贝叶斯分类器

Key words

MapReduce/overlapping phases/adaptability/machine learning/Bayesian classifier

分类

信息技术与安全科学

引用本文复制引用

于倩,蔚承建,王开,朱林军..基于机器学习的 MapReduce 资源调度算法[J].计算机应用研究,2016,(1):111-114,4.

基金项目

江苏省自然科学基金资助项目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文