| 注册
首页|期刊导航|计算机应用研究|基于低秩表示的非负张量分解算法

基于低秩表示的非负张量分解算法

刘亚楠 刘路路 罗斌

计算机应用研究Issue(1):300-303,4.
计算机应用研究Issue(1):300-303,4.DOI:10.3969/j.issn.1001-3695.2016.01.069

基于低秩表示的非负张量分解算法

Non-negative tensor factorization algorithm based on low rank representation

刘亚楠 1刘路路 1罗斌2

作者信息

  • 1. 合肥师范学院 计算机学院,合肥 230601
  • 2. 安徽大学 计算机科学与技术学院,合肥 230039
  • 折叠

摘要

Abstract

This paper proposed a non-negative tensor decomposition algorithm based on low-rank representation to improve the accuracy of image classification.As the extension and the development of compressed sensing theory,the low-rank representa-tion denoted that the rank of the matrix could be used as a measurement of sparsity.Since the rank of a matrix reflected the in-herent property of the matrix,the low-rank analysis could effectively analyze and process the matrix data.This paper intro-duced the low-rank representation into tensor model,namely to introduce it into non-negative tensor decomposition algorithm and to further expand the non-negative tensor decomposition algorithm.Experimental results show that the classification accu-racy of the algorithms proposed in this paper is better compared to other existing algorithms.

关键词

图像分类/低秩表示/非负/张量分解

Key words

image classification/low rank representation/non-negative/tensor decomposition

分类

信息技术与安全科学

引用本文复制引用

刘亚楠,刘路路,罗斌..基于低秩表示的非负张量分解算法[J].计算机应用研究,2016,(1):300-303,4.

基金项目

高校省级优秀青年人才基金重点项目(2011SQRL129ZD);安徽省高校自然科学研究重点项目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文