| 注册
首页|期刊导航|计算机工程与应用|自适应迁移预测的动态多目标差分演化算法

自适应迁移预测的动态多目标差分演化算法

万书振

计算机工程与应用Issue(2):86-91,6.
计算机工程与应用Issue(2):86-91,6.DOI:10.3778/j.issn.1002-8331.1509-0253

自适应迁移预测的动态多目标差分演化算法

Adaptive immigration and prediction strategy based dynamic multi-objective differential evolu-tion

万书振1

作者信息

  • 1. 三峡大学 计算机与信息学院,湖北 宜昌 443002
  • 折叠

摘要

Abstract

In order to solve the problem of searching and tracing the Pareto Optimal Front(POF)and Pareto Optimal Set (POS), two strategies are investigated. The adaptive immigration strategy is designed to improve the diversity of the popu-lation by adaptively inserting the immigrations according to the changed environments, thus can improve the adaptability to the environments. The prediction strategy is used to quickly trace POF by the prediction population which is estab-lished by the time series and some disturbances. The two strategies are introduced into differential evolution to solve the dynamic multi-objective problems. The experimental results show that the adaptive and prediction strategies based differ-ential evolution shows great ability to adapt to the changed environments and can find POS quickly.

关键词

动态多目标优化/自适应迁移策略/预测策略/差分演化算法

Key words

dynamic multi-objective optimization/adaptive immigration strategy/prediction strategy/differential evolution

分类

信息技术与安全科学

引用本文复制引用

万书振..自适应迁移预测的动态多目标差分演化算法[J].计算机工程与应用,2016,(2):86-91,6.

基金项目

科技部国家重点科技专项(No.2014ZX07104-005-01);湖北省教育厅项目(No.B2015253);湖北省科技厅项目(No.2014CFB681);三峡大学科研启动基金项目(No.KJ2012B055)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文