| 注册
首页|期刊导航|计算机工程与应用|多目标跟踪中一种改进的高斯混合PHD滤波算法

多目标跟踪中一种改进的高斯混合PHD滤波算法

胡玮静 陈秀宏

计算机工程与应用Issue(2):244-249,255,7.
计算机工程与应用Issue(2):244-249,255,7.DOI:10.3778/j.issn.1002-8331.1402-0422

多目标跟踪中一种改进的高斯混合PHD滤波算法

Improved Gaussian mixture PHD filter for multi-target tracking

胡玮静 1陈秀宏1

作者信息

  • 1. 江南大学 数字媒体学院,江苏 无锡 214122
  • 折叠

摘要

Abstract

The Gaussian mixture probability hypothesis density filter is an algorithm for estimating multiple target states in clutter. An improved algorithm is proposed to resolve the missed detection problem and enhance the accuracy of the fil-ter while tracking close proximity targets. Under Gaussian mixture assumptions, the predication and update equations of the PHD filter are modified, which effectively solve the information loss problem of missed true targets. And then depend-ing on the weights of Gaussian components which decide whether the components can be utilized to extract states, the pro-posed algorithm avoids the components which have higher weights are merged and improves the tracking performance when the targets move closely. Simulation results show that the new algorithm has advantages over the ordinary one in both the aspects of filter precision and multi-target number estimation.

关键词

多目标跟踪/高斯混合概率假设密度/漏检/分量合并

Key words

multi-target tracking/Gaussian mixture probability hypothesis density filter/missed detection/component merging

分类

信息技术与安全科学

引用本文复制引用

胡玮静,陈秀宏..多目标跟踪中一种改进的高斯混合PHD滤波算法[J].计算机工程与应用,2016,(2):244-249,255,7.

基金项目

国家自然科学基金(No.61373055)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文