| 注册
首页|期刊导航|机电工程技术|基于BP神经网络的锁模机构运行振动量的预测

基于BP神经网络的锁模机构运行振动量的预测

曾凡 郑文 李涉 胡鉴源

机电工程技术Issue(1):57-60,81,5.
机电工程技术Issue(1):57-60,81,5.DOI:10.3969/j.issn.1009-9492.2016.01.015

基于BP神经网络的锁模机构运行振动量的预测

Prediction of the Vibration of the Lock Mechanism Based on BP Neural Network

曾凡 1郑文 1李涉 1胡鉴源1

作者信息

  • 1. 广州大学机械与电气工程学院,广东广州 510006
  • 折叠

摘要

Abstract

This paper established an operating parameters optimization model of bottle blowing machine clamping mechanism by using BP neural network, including the determination of network model structure, the training of the network model, the verification of network model. Finally predict the vibration quantity under the optimal operation parameters combination by using the established BP neural network. Through with the actual test results, obtain the optimal operation parameters of clamping mechanism. It can save resources, reduce the production cost. So it has a certain guidance in practical production.

关键词

BP神经网络/锁模机构/优化模型/振动量

Key words

BP neural network/locking mechanism/optimization model/vibration

分类

信息技术与安全科学

引用本文复制引用

曾凡,郑文,李涉,胡鉴源..基于BP神经网络的锁模机构运行振动量的预测[J].机电工程技术,2016,(1):57-60,81,5.

机电工程技术

1009-9492

访问量0
|
下载量0
段落导航相关论文