基于灰色关联度聚类与标签重叠因子结合的协同过滤推荐方法研究OA北大核心CSCDCSTPCD
A collaborative filtering recommendation method based on clustering of gray association degree and factors of tag overlap
协同过滤算法是目前被广泛运用在推荐系统领域的最成功技术之一,但是面对用户数量的快速增长及相应的评分数据的缺失,推荐系统中的数据稀疏性问题也越来越明显,严重地影响着推荐的质量和效率.针对传统协同过滤算法中的稀疏性问题,采用了基于灰色关联度的方法对用户评分矩阵进行数据标准化处理,得到用户关联度并形成关联度矩阵;然后对关联矩阵中的用户进行关联度聚类,以减少相似性算法的复杂度;之后利用标签重叠因子对传统计算用户相似性的协同过滤算法进行改进,将重叠因子与用…查看全部>>
赵宏晨;翟丽丽;张树臣
哈尔滨理工大学管理学院,黑龙江哈尔滨150040哈尔滨理工大学管理学院,黑龙江哈尔滨150040哈尔滨理工大学高新技术产业发展研究中心,黑龙江哈尔滨150040
信息技术与安全科学
协同过滤灰色关联度标签重叠因子
collaborative filteringgray correlation degreefactors of tag overlap
《计算机工程与科学》 2016 (1)
软件产业虚拟集群合作竞争机制研究
171-176,6
国家自然科学基金(71272191,71072085)黑龙江省自然科学基金(G201301)黑龙江省高等学校哲学社会科学创新团队建设计划(TD201203)黑龙江省博士后基金(LBH-Z14068)
评论