| 注册
首页|期刊导航|环境与可持续发展|基于深层神经网络的电力负荷预测

基于深层神经网络的电力负荷预测

何琬 刘进 朱肖晶

环境与可持续发展Issue(1):83-87,5.
环境与可持续发展Issue(1):83-87,5.

基于深层神经网络的电力负荷预测

Power Load Forecast Based on Deep Neural Networks

何琬 1刘进 1朱肖晶2

作者信息

  • 1. 国网能源研究院,北京 102209
  • 2. 国网苏州供电公司,江苏 215004
  • 折叠

摘要

Abstract

Accurate electrical load forecast has great economic and social value� In this paper, we study load forecast methods based on deep neural networks. We first analyze the critical features in load forecast. Then we present details of deep neural networks, supervised discriminative pre-training method, and the three activation functions used in this paper. We compare the performances of different neural network models and show the advantages of the proposed methods using a rather large data set of loads.

关键词

负荷预测/深层神经网络/预训练/激活函数

Key words

load forecast/deep neural networks/pre-training/activation function

分类

资源环境

引用本文复制引用

何琬,刘进,朱肖晶..基于深层神经网络的电力负荷预测[J].环境与可持续发展,2016,(1):83-87,5.

环境与可持续发展

1673-288X

访问量0
|
下载量0
段落导航相关论文