计算机工程与应用2016,Vol.52Issue(3):21-26,6.DOI:10.3778/j.issn.1002-8331.1504-0048
一类偏微分方程的格子Boltzmann模型
Lattice Boltzmann model for a class of partial differential equa- tions
摘要
Abstract
The convection-diffusion equation, Burgers equation and Modified-Burgers equation, which are a class of partial differential equation that has the same form, are investigated. And the D1Q3 lattice Boltzmann model with modified terms is developed to numerically solve these equations. In order to recover the governing equation correctly, based on the Chapman-Enskog expansion and multi-scale technique, the specific expression of equilibrium distribution function and modified function are deduced. The numerical computation results show that the D1Q3 lattice Boltzmann model is stable and effective.关键词
格子Boltzmann模型/对流扩散方程/Burgers方程/Modified-Burgers方程/D1Q3模型Key words
lattice Boltzmann model/convection-diffusion equation/Burgers'equation/Modified-Burgers'equation/D1Q3 model分类
数理科学引用本文复制引用
戴厚平,郑洲顺,段丹丹..一类偏微分方程的格子Boltzmann模型[J].计算机工程与应用,2016,52(3):21-26,6.基金项目
国家自然科学基金(No.51174236) (No.51174236)
国家重点基础研究发展规划(973)(No.2011CB606306-4). (973)