| 注册
首页|期刊导航|农机化研究|基于图像处理新技术的甜菜氮营养无损检测系统的研究

基于图像处理新技术的甜菜氮营养无损检测系统的研究

李哲 田海清 王辉 徐琳 李斐 史树德

农机化研究Issue(9):219-223,5.
农机化研究Issue(9):219-223,5.

基于图像处理新技术的甜菜氮营养无损检测系统的研究

Research on Sugar Beet Nitrogen Nutrition Nondestructive Testing System Based on Image Processing Technology

李哲 1田海清 1王辉 1徐琳 1李斐 1史树德1

作者信息

  • 1. 内蒙古农业大学机电工程学院,呼和浩特 010018
  • 折叠

摘要

Abstract

In this paper, problems common nitrogen fertilizer used in excess of the current agricultural beet production, the establishment of critical real-time accurate nitrogen fertilizer recommendation system.In this paper, by using the BP neural network algorithm using image data to predict nitrogen content of beet, through reasonable excluding abnormal data from the original image data does not match the shooting conditions selected 147 sets of data as a training set, 90 sets of data for the prediction set group.The R, G, B as an input to obtain the predicted value and the actual value of the BP <br> neural network algorithm trained by the best correlation coefficient of r =0 .70 , root mean square error RMSE =4 .60 . The R /(R +G +B), G /(R +G +B), B /(R +G +B) as an input, the use of BP neural network algorithm trained after the predicted value and the actual value of the best correlation coefficient r =0 .64 , root mean square error RMSE =3.66.As can be seen, the use of BP neural network algorithm for establishing beet color feature information ni-trogen model is feasible, provide methodological support for agricultural production in real-time lossless diagnostic beet plant nitrogen content.

关键词

甜菜/氮素/预测/BP神经网络/相关系数

Key words

beets/nitrogen/forecasting/BP neural network/correlation coefficient

分类

农业科技

引用本文复制引用

李哲,田海清,王辉,徐琳,李斐,史树德..基于图像处理新技术的甜菜氮营养无损检测系统的研究[J].农机化研究,2016,(9):219-223,5.

基金项目

国家自然科学基金项目(41261084);国家现代农业产业技术体系专项 ()

农机化研究

OA北大核心

1003-188X

访问量0
|
下载量0
段落导航相关论文