| 注册
首页|期刊导航|重庆大学学报|基于 PSO 优化 LS-SVM 的木材含水率软测量建模

基于 PSO 优化 LS-SVM 的木材含水率软测量建模

姜滨 孙丽萍 曹军 季仲致

重庆大学学报Issue(1):48-54,7.
重庆大学学报Issue(1):48-54,7.DOI:10.11835/j.issn.1000-582X.2016.01.007

基于 PSO 优化 LS-SVM 的木材含水率软测量建模

Soft sensor model for wood moisture content based on LS-SVM optimized by PSO

姜滨 1孙丽萍 2曹军 1季仲致1

作者信息

  • 1. 东北林业大学 机电工程学院,哈尔滨 150040
  • 2. 哈尔滨电工仪表研究所,哈尔滨 150028
  • 折叠

摘要

Abstract

Wood moisture content is an important technical specification in the wood drying process. Considering the strong coupling,large lag non-linear features of the wood drying process and the problem of low precision of wood moisture content detection,we proposed a soft sensor method using least squares support vector machines (LS-SVM)to learn time series data of a non-linear system,and built a soft sensor model of the controlled object.We also used the particle swarm optimization (PSO)algorithm in the moving horizon optimization of the penalty factor and the kernel function parameter of LS-SVM to improve the prediction precision of the soft sensor model.Taking the inner temperature and humidity of a wood drying kiln as the sample data,the wood moisture content at a specific point can be detected with the model based on LS-SVM optimized by PSO,which is denoted by PSO-LSSVM.The simulation reveals that the PSO-LSSVM has a high prediction precision and strong generalization ability,and can fulfill the actual measurement demand of a wood drying control system.

关键词

支持向量机/最小二乘法/粒子群优化/软测量/建模

Key words

support vector machines/least squares/particle swarm optimization/soft sensor/modeling

分类

信息技术与安全科学

引用本文复制引用

姜滨,孙丽萍,曹军,季仲致..基于 PSO 优化 LS-SVM 的木材含水率软测量建模[J].重庆大学学报,2016,(1):48-54,7.

基金项目

国家林业公益性行业科研专项资助项目(201304502)。Supported by the Forestry Industry Research Special Funds for PublicWelfare Project(201304502). ()

重庆大学学报

OA北大核心CSCDCSTPCD

1000-582X

访问量0
|
下载量0
段落导航相关论文