| 注册
首页|期刊导航|东南大学学报(自然科学版)|基于双 STF-UKF 算法的永磁同步电机参数联合估计

基于双 STF-UKF 算法的永磁同步电机参数联合估计

林辉 吕帅帅

东南大学学报(自然科学版)Issue(1):49-54,6.
东南大学学报(自然科学版)Issue(1):49-54,6.DOI:10.3969/j.issn.1001-0505.2016.01.009

基于双 STF-UKF 算法的永磁同步电机参数联合估计

PMSM parameters estimation based on dual STF-UKF algorithm

林辉 1吕帅帅1

作者信息

  • 1. 西北工业大学自动化学院,西安710129
  • 折叠

摘要

Abstract

To solve the parameter identification problem of the permanent magnet synchronous mo-tor, the identification model of PMSM( permanent magnet synchronous motor) was analyzed.Re-garding the parameters as slow varied states along with time and considering the presence of the sys-tem noise and measure noise, an improved unscented Kalman filter( UKF) algorithm was proposed based on the strong tracking filter( STF) .This improved filter algorithm is able to estimate the pa-rameters of PMSM including stator resistance, permanent magnet flux linkage and q-axis and d-axis inductance.The stability of the proposed algorithm was discussed.In order to reduce the calculation consumption of the algorithm, the four parameters were divided into two parts and estimated by dual STF-UKF, respectively.Simulation results show that the improved UKF algorithm can estimate the parameters accurately under different PMSM operations.

关键词

永磁同步电机/参数辨识/强跟踪滤波器/无迹卡尔曼滤波/稳定性

Key words

permanent magnet synchronous motor/parameters estimation/strong tracking filter/unscented Kalman filter/stability

分类

信息技术与安全科学

引用本文复制引用

林辉,吕帅帅..基于双 STF-UKF 算法的永磁同步电机参数联合估计[J].东南大学学报(自然科学版),2016,(1):49-54,6.

基金项目

国家自然科学基金资助项目(51407143)、高等学校博士学科点专项科研基金资助项目(20136102120049)、中央高校基本科研业务费专项资助项目(3102014JCQ01066)、陕西省自然科学基础研究计划资助项目(2014JQ7264,2015JM5227)、陕西省微特电机及驱动技术重点实验室开放基金资助项目(2013SSJ1002). ()

东南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-0505

访问量0
|
下载量0
段落导航相关论文