| 注册
首页|期刊导航|林产化学与工业|近红外光谱结合支持向量机快速识别树种

近红外光谱结合支持向量机快速识别树种

梁龙 房桂干 崔宏辉 吴珽 张新民 赵振义

林产化学与工业Issue(1):55-60,6.
林产化学与工业Issue(1):55-60,6.DOI:10.3969/j.issn.0253-2417.2016.01.008

近红外光谱结合支持向量机快速识别树种

Fast Identification of Wood Species by Near Infrared Spectroscopy Coupling with Support Vector Machine

梁龙 1房桂干 1崔宏辉 1吴珽 1张新民 2赵振义2

作者信息

  • 1. 中国林业科学研究院 林产化学工业研究所 生物质化学利用国家工程实验室 国家林业局 林产化学工程重点开放性实验室 江苏省 生物质能源与材料重点实验室,江苏 南京210042
  • 2. 华夏科创仪器有限公司,北京 100085
  • 折叠

摘要

Abstract

Fast identification of different wood materials for papermaking by portable hadamard transform near infrared spectroscopy (HT-NIR) in combination with support vector machines (SVM) was investigated in present study. Savitzky-Golay smoothing method and standard normal variation were used to pretreat the spectral for eliminating noise and measurement deviation caused by light scattering. The one-against-all model and one-against-one model were constructed based on different SVM modeling strategies. The prediction performance for genera classification and species classification of two SVM models was evaluated with partial least squares discriminant analysis (PLS-DA). In this study,SVM was applied to identify different wood species, such as eucalyptus, acacia, populus and metasequoia. The genera correct classification rates and species correct classification rates achieved above 98% and 95%, respectively. The SVM method demonstrated its integrated merits in solving complex classification compared with the traditional linear machine learning methods. The study results showed the feasibility of industrial application of NIR technology and laid the foundation for building the on-line NIR analysis system for wood chips.

关键词

近红外光谱/支持向量机/树种识别/制浆

Key words

near infrared spectroscopy/support vector machines/wood species identification/pulp

分类

化学化工

引用本文复制引用

梁龙,房桂干,崔宏辉,吴珽,张新民,赵振义..近红外光谱结合支持向量机快速识别树种[J].林产化学与工业,2016,(1):55-60,6.

基金项目

国家林业局948技术引进项目(2014-4-31) (2014-4-31)

林产化学与工业

OA北大核心CSCDCSTPCD

0253-2417

访问量2
|
下载量0
段落导航相关论文