| 注册

快速随机多核学习分类算法

孙涛 冯婕

西安电子科技大学学报(自然科学版)Issue(1):36-40,5.
西安电子科技大学学报(自然科学版)Issue(1):36-40,5.DOI:10.3969/j.issn.1001-2400.2016.01.007

快速随机多核学习分类算法

Fast randommultiple kernel learning for classification

孙涛 1冯婕1

作者信息

  • 1. 西安电子科技大学 智能感知与图像理解教育部重点实验室,陕西 西安 710071
  • 折叠

摘要

Abstract

Multiple kernel learning ( MKL) combines multiple kernels in a convex optimization framework and seeks the best line combination of them . Generally , MKL can get better results than single kernel learning , but heavy computational burden makes MKL impractical . Inspired by the extreme learning machine ( ELM ) , a novel fast MKL method based on the random kernel is proposed . When the framework of ELM is satisfied , the kernel parameters can be given randomly , which produces the random kernel . Thus , the sub-kernel scale is reduced largely , which accelerates the training time and saves the memory . Furthermore , the reduced kernel scale can reduce the error bound of MKL by analyzing the empirical Rademacher complexity of MKL . It gives a theoretical guarantee that the proposed method gets a higher classification accuracy than traditional MKL methods . Experiments indicate that the proposed method uses a faster speed , more small memory and gets better results than several classical fast MKL methods .

关键词

多核学习/极限学习/随机核/经验 Rademacher 复杂度

Key words

multiple kernel learning/extreme learning machine/random kernel/empirical rademacher complexity

分类

信息技术与安全科学

引用本文复制引用

孙涛,冯婕..快速随机多核学习分类算法[J].西安电子科技大学学报(自然科学版),2016,(1):36-40,5.

基金项目

国家973计划资助项目(2013CB329402);国家自然科学基金资助项目(61272282);新世纪人才计划资助项目 ()

西安电子科技大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-2400

访问量0
|
下载量0
段落导航相关论文