| 注册
首页|期刊导航|信阳师范学院学报(自然科学版)|基于正则化的模糊 C-均值聚类算法及其在T-S 模糊系统辨识问题中的应用

基于正则化的模糊 C-均值聚类算法及其在T-S 模糊系统辨识问题中的应用

王艳 徐再花 张大庆

信阳师范学院学报(自然科学版)Issue(1):124-128,5.
信阳师范学院学报(自然科学版)Issue(1):124-128,5.DOI:10.3969/j.issn.1003-0972.2016.01.030

基于正则化的模糊 C-均值聚类算法及其在T-S 模糊系统辨识问题中的应用

Fuzzy C-means Clustering Algorithm Based Regularization and Its Application in the Problem of T-S Fuzzy System Identification

王艳 1徐再花 1张大庆1

作者信息

  • 1. 辽宁科技大学理学院,辽宁鞍山114051
  • 折叠

摘要

Abstract

A new fuzzy C‐means clustering algorithm (RBFCM ,Regularization based Fuzzy C‐means) algo‐rithm was established by adding a regularization functional ,which was constructed by the errors of clustering centers ,in the objective function of fuzzy C‐means clustering algorithm .Algorithm RBFCM could not only a‐chieve high clustering accuracy ,but also stable the computed results .Furthermore ,the obtained RBFCM algo‐rithm was applied in T‐S fuzzy model based on system identification problem .Because of the optimized partition of the input space and the improved membership functions ,the accuracy of the solution and the convergence speed of the followed T‐S fuzzy system identification process were improved too .Finally ,the validity and ad‐vances of RBFCM algorithm were illustrated by the cluster examples of IRIS data set and the noised IRIS data set and the identification example of Box‐Jenkins gas furnace data set .

关键词

模糊聚类/正则化/模糊模型/系统辨识

Key words

fuzzy clustering/regularization/fuzzy modeling/system identification

分类

信息技术与安全科学

引用本文复制引用

王艳,徐再花,张大庆..基于正则化的模糊 C-均值聚类算法及其在T-S 模糊系统辨识问题中的应用[J].信阳师范学院学报(自然科学版),2016,(1):124-128,5.

基金项目

国家自然科学基金项目 ()

信阳师范学院学报(自然科学版)

OA北大核心CSTPCD

1003-0972

访问量0
|
下载量0
段落导航相关论文