| 注册
首页|期刊导航|化工学报|动态RBF神经网络在浮选过程模型失配中的应用

动态RBF神经网络在浮选过程模型失配中的应用

王晓丽 黄蕾 杨鹏 阳春华

化工学报2016,Vol.67Issue(3):897-902,6.
化工学报2016,Vol.67Issue(3):897-902,6.DOI:10.11949/j.issn.0438-1157.20151940

动态RBF神经网络在浮选过程模型失配中的应用

Dynamic RBF neural networks for model mismatch problem and its application in flotation process

王晓丽 1黄蕾 1杨鹏 1阳春华1

作者信息

  • 1. 中南大学信息科学与工程学院,湖南长沙 410083
  • 折叠

摘要

Abstract

It is difficult to measure the process parameters online in the bauxite froth flotation process because the slurry deposits quickly. Especially, frequent change of the characteristics of the ore makes the process parameters change from time to time. So that, the static soft sensing models, such as the neural network model, which was obtained by a fixed set of training samples, may not track the dynamic characteristics of the process caused by change of the ore resource. And, thus, model mismatch problem occurs. In this paper, for model mismatch problem under various ore sources, dynamic RBF neural network modeling method based on the hidden layer node dynamic allocation and model parameters dynamic correction strategy is proposed. And the model is used for online measurement of the pH of the slurry in the flotation process, simulation results show that the dynamic model can solve the model mismatch problem well.

关键词

泡沫浮选过程/动态RBF神经网络/模型失配/工况迁移

Key words

froth flotation process/dynamic RBF neural network/model mismatch/migration of working condition

分类

化学化工

引用本文复制引用

王晓丽,黄蕾,杨鹏,阳春华..动态RBF神经网络在浮选过程模型失配中的应用[J].化工学报,2016,67(3):897-902,6.

基金项目

国家自然科学基金项目(61304126,61473318,61134006,61304019)。@@@@supported by the National Natural Science Foundation of China (61304126,61473318,61134006,61304019) (61304126,61473318,61134006,61304019)

化工学报

OA北大核心CSCDCSTPCD

0438-1157

访问量2
|
下载量0
段落导航相关论文