| 注册
首页|期刊导航|计算机应用研究|结合类别偏好信息的item-based 协同过滤算法

结合类别偏好信息的item-based 协同过滤算法

冷亚军 陆青 张俊岭

计算机应用研究2016,Vol.33Issue(3):669-672,4.
计算机应用研究2016,Vol.33Issue(3):669-672,4.DOI:10.3969/j.issn.1001-3695.2016.03.007

结合类别偏好信息的item-based 协同过滤算法

Improved item-based collaborative filtering algorithm combined with class preference information

冷亚军 1陆青 1张俊岭2

作者信息

  • 1. 上海电力学院 经济与管理学院,上海 201300
  • 2. 浙江师范大学 经济与管理学院,浙江 金华 321004
  • 折叠

摘要

Abstract

The traditional item-based collaborative filtering(CF)algorithm computes item-item similarity offline,so it en-hances the real-time performance of recommender system.However,item-based CF algorithm still suffers from the data sparsity problem,as a result that the recommendation quality is poor.To address this issue,this paper proposed a novel CF algorithm combined with class preference information.The proposed algorithm first found out candidate neighbors who were similar to the target item in class preference.Then it searched for nearest neighbors in the candidate neighbor set,which eliminated the in-terference of the items those had few co-ratings with the target item.Experimental results based on MovieLens dataset show that the recommendation quality of the new algorithm is significantly improved compared with traditional item-based CF algorithm.

关键词

推荐系统/协同过滤/类别偏好/相似性

Key words

recommender system/collaborative filtering/class preference/similarity

分类

信息技术与安全科学

引用本文复制引用

冷亚军,陆青,张俊岭..结合类别偏好信息的item-based 协同过滤算法[J].计算机应用研究,2016,33(3):669-672,4.

基金项目

国家自然科学基金资助项目(71201145);上海市教育委员会科研创新资助项目(15ZS064);上海电力学院科研基金资助项目(K2014-037);上海高校青年教师培养资助计划 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文