| 注册
首页|期刊导航|计算机应用研究|采用异构搜索的多子群协同进化粒子群算法

采用异构搜索的多子群协同进化粒子群算法

林国汉 章兢 刘朝华

计算机应用研究2016,Vol.33Issue(3):677-681,5.
计算机应用研究2016,Vol.33Issue(3):677-681,5.DOI:10.3969/j.issn.1001-3695.2016.03.009

采用异构搜索的多子群协同进化粒子群算法

Multi-swarm cooperative particle swarm algorithm with heterogeneous search strategy

林国汉 1章兢 2刘朝华3

作者信息

  • 1. 湖南工程学院 电气信息学院,湖南 湘潭 411101
  • 2. 湖南大学 电气与信息工程学院,长沙 410082
  • 3. 湖南大学 电气与信息工程学院,长沙 410082
  • 折叠

摘要

Abstract

Conventional particle swarm optimization is easily trapped in local optima and has the problem of low search accura-cy.This paper proposed a multi-swarm particle swarm optimization with heterogeneous search.The proposed algorithm consis-ted of one adaptive sub-swarm,one elite sub-swarm and several ordinary sub-swarm,particles in elite sub-swarm were out-standing individuals migrated from adaptive sub-swarm and ordinary sub-swarm.Each sub-swarm evolved with heterogeneous strategies.It changed the inertia weight adaptively according to the degree of population premature convergence.It adjusted the flight direction of the particles in adaptive sub-swarm according to fitness value and speed of ordinary sub-swarm.It em-ployed the immune clonal selection operator for optimizing the elite sub-swarm while employed the migration scheme for the in-formation exchange between elite sub-swarm and others sub-swarm.Experiments on four benchmark function show that the pro-posed method can maintain the diversity of particles with strong global search capability,and converge with high precision and with better optimization performance.

关键词

粒子群优化/异构搜索/多子群/协同进化/多样性/克隆选择

Key words

particle swarm optimization (PSO)/heterogeneous search/multi-swarm/cooperative evolution/diversity/clo-nal selection

分类

信息技术与安全科学

引用本文复制引用

林国汉,章兢,刘朝华..采用异构搜索的多子群协同进化粒子群算法[J].计算机应用研究,2016,33(3):677-681,5.

基金项目

国家自然科学基金资助项目(61174140);中国博士后基金资助项目(2013M540628);湖南省自然科学基金资助项目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文