| 注册
首页|期刊导航|计算机应用研究|基于贝叶斯网络的海量数据多维分类学习方法研究

基于贝叶斯网络的海量数据多维分类学习方法研究

陈池梅 张林

计算机应用研究2016,Vol.33Issue(3):689-692,4.
计算机应用研究2016,Vol.33Issue(3):689-692,4.

基于贝叶斯网络的海量数据多维分类学习方法研究

Bayesian net based multi-dimensional classification learning algorithm

陈池梅 1张林2

作者信息

  • 1. 重庆医科大学附属第一医院 信息中心,重庆 400016
  • 2. 西南石油大学 计算机科学学院,成都 610500
  • 折叠

摘要

Abstract

In order to improve the execution efficiency of multi-dimensional classification while preserving high prediction ac-curacy,this paper proposed a Bayesian net based multi-dimensional classification learning algorithm.Firstly,it described the problem of multi-dimensional classification as the problem of conditional probability distribution.Secondly,it built a condi-tional tree Bayesian net model according to the dependence of class vector.Finally,it learnt the structure and parameters of the conditional tree model based on the training data set,and proposed a multi-dimensional classification prediction algorithm. Massive experiments on real dataset show that,compared with the state-of-the-art multi-dimensional classification algorithm MMOC,the proposed algorithm improves the execution efficiency of multi-dimensional classification while preserving high pre-diction accuracy.So,the proposed algorithm is more suitable in multi-dimensional classification for massive data.

关键词

多维分类/贝叶斯网络/机器学习/海量数据

Key words

multi-dimensional classification/Bayesian network/machine learning/massive data

分类

信息技术与安全科学

引用本文复制引用

陈池梅,张林..基于贝叶斯网络的海量数据多维分类学习方法研究[J].计算机应用研究,2016,33(3):689-692,4.

基金项目

国家自然科学基金资助项目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文