| 注册
首页|期刊导航|计算机应用研究|基于双正则化参数的在线字典学习超分辨率重建

基于双正则化参数的在线字典学习超分辨率重建

倪浩 阮若林 刘芳华

计算机应用研究2016,Vol.33Issue(3):911-915,5.
计算机应用研究2016,Vol.33Issue(3):911-915,5.DOI:10.3969/j.issn.1001-3695.2016.03.062

基于双正则化参数的在线字典学习超分辨率重建

Image super-resolution based on online dictionary learning with two regularization parameters

倪浩 1阮若林 2刘芳华1

作者信息

  • 1. 湖北科技学院 电子与信息工程学院,湖北 咸宁 437100
  • 2. 湖北科技学院 生物医学工程学院,湖北 咸宁 437100
  • 折叠

摘要

Abstract

The performance of some learning-based super-resolution methods are promising,but some obvious artifacts appear in the reconstruction images.In order to solve this problem,this paper presented a novel super-resolution algorithm based on online dictionary learning (ODL)with two regularization parameters.It employed ODL in the dictionary learning procedure. Then the algorithm set two regularization parameters in the procedures of dictionary learning and image reconstruction.In the experiments,the PSNRs of the new method were 0.39 dB higher than the state-of-the-art sparse coding super-resolution (SCSR)in average.It could eliminate the artifacts while recovering the edge sharpness and the texture details efficiently.With the introduction of ODL and two regularization parameters,it promoted the dictionary training accuracy and made the sparse coefficients in dictionary learning and image reconstruction adjustable separately.The experiments show that the artifacts are eliminated effectively.It promotes the final effect of super-resolution reconstruction well.

关键词

正则化参数/超分辨率/在线字典学习/稀疏编码/图像

Key words

regularization parameters/super-resolution(SR)/online dictionary learning/sparse coding/image

分类

信息技术与安全科学

引用本文复制引用

倪浩,阮若林,刘芳华..基于双正则化参数的在线字典学习超分辨率重建[J].计算机应用研究,2016,33(3):911-915,5.

基金项目

国家自然科学基金资助项目(61271256);湖北省高等学校优秀中青年科技创新团队计划项目(T201513);湖北省自然科学基金资助项目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文