| 注册
首页|期刊导航|电子科技大学学报|MUSE:一种面向云存储系统的高性能元数据存储引擎

MUSE:一种面向云存储系统的高性能元数据存储引擎

段翰聪 向小可 吕鹏程

电子科技大学学报2016,Vol.45Issue(2):221-226,6.
电子科技大学学报2016,Vol.45Issue(2):221-226,6.DOI:10.3969/j.issn.1001-0548.2016.03.011

MUSE:一种面向云存储系统的高性能元数据存储引擎

MUSE:A High-Performance Metadata Storage Engine for Cloud Storage System

段翰聪 1向小可 1吕鹏程1

作者信息

  • 1. 电子科技大学计算机科学与工程学院成都 611731
  • 折叠

摘要

Abstract

In the cloud storage systems, the accesses of massive small files metadata will generate a large number of random disk I/O requests, which will become the performance bottleneck of the entire storage system. In this paper, metadata unit storage engine (MUSE), a kind of metadata storage engine for cloud storage system, is proposed to support massive small files storage with high performance. Firstly, LevelDB, a high speed key-value storage engine based on LSM-tree, is used as underlying physical storage module. Secondly, LevelDB is enhanced by introducing multiple buffer tables and multiple compaction threads, which take full advantages of memory and multi-core processor. Thirdly, a new metadata accesses scheduling mechanism on multiple I/O channels is proposed. Channel is an independent data storage pipe formed by binding the independent thread to the independent physical disk. In this way, the access operations are isolated between channels, and then the aggregation of multiple channels can provide high concurrency random I/O. In addition, MUSE proposes two namespace management strategies: Split-path mapping strategy and absolute path mapping strategy, aimed to make trade-off according to different application scenarios by users. Benchmarks show that MUSE can support the massive small files storage scene and outperform other metadata storage systems.

关键词

I/O/LSM-tree/海量/元数据/性能/小文件/存储引擎

Key words

I/O/LSM-tree/massive/metadata/performance/small file/storage engine

分类

信息技术与安全科学

引用本文复制引用

段翰聪,向小可,吕鹏程..MUSE:一种面向云存储系统的高性能元数据存储引擎[J].电子科技大学学报,2016,45(2):221-226,6.

基金项目

国家重大科技专项(2012ZX03002-004-004) (2012ZX03002-004-004)

电子科技大学学报

OA北大核心CSCDCSTPCD

1001-0548

访问量0
|
下载量0
段落导航相关论文