| 注册
首页|期刊导航|计算机工程与应用|结合互信息和主题模型的微博话题发现方法

结合互信息和主题模型的微博话题发现方法

孙曰昕 马慧芳 姚伟 张志昌

计算机工程与应用2016,Vol.52Issue(6):61-66,6.
计算机工程与应用2016,Vol.52Issue(6):61-66,6.DOI:10.3778/j.issn.1002-8331.1405-0113

结合互信息和主题模型的微博话题发现方法

Microblog hot topic detection based on positive point mutual informa-tion and probabilistic topic model

孙曰昕 1马慧芳 1姚伟 1张志昌1

作者信息

  • 1. 西北师范大学 计算机科学与工程学院,兰州 730070
  • 折叠

摘要

Abstract

In order to face the challenges of feature sparsely of short text messages for microblog hot topic detection, this paper proposes a hot topic detection method based on the combination of term mutual information and probabilistic topic model. Symmetric Nonnegative Matrix Factorization(sNMF)is performed on word co-occurrence with word mutual information and the matrix of term-topic matrix is thereafter inferred. Probabilistic Latent Semantic Analysis(pLSA)model is then adopted to model the topic-microblog. The hotness of topic is analyzed and sorted. Experiments show that this method can effectively cluster and detect the hot topics.

关键词

词共现矩阵/对称非负矩阵分解/概率潜在语义分析/微博热点话题发现

Key words

term co-occurrence matrix/symmetrical nonnegative matrix factorization/probabilistic latent semantic analysis/micro-blog hot topic detection

分类

信息技术与安全科学

引用本文复制引用

孙曰昕,马慧芳,姚伟,张志昌..结合互信息和主题模型的微博话题发现方法[J].计算机工程与应用,2016,52(6):61-66,6.

基金项目

国家自然科学基金(No.61163039,No.61363058);甘肃省教育厅项目(No.2013A-016)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文