| 注册
首页|期刊导航|计算机工程与应用|基于改进支持向量机的Wi-Fi室内定位算法

基于改进支持向量机的Wi-Fi室内定位算法

丁雪芳 王琪

计算机工程与应用2016,Vol.52Issue(6):90-93,4.
计算机工程与应用2016,Vol.52Issue(6):90-93,4.DOI:10.3778/j.issn.1002-8331.1404-0106

基于改进支持向量机的Wi-Fi室内定位算法

Wi-Fi indoor localization algorithm based on improved support vector machine

丁雪芳 1王琪1

作者信息

  • 1. 西安科技大学 高新学院,西安 710000
  • 折叠

摘要

Abstract

Wi-Fi signal is unstable in complex indoor environment and localization precision of support vector machine is very low. In order to improve the localization precision of indoor nodes, a novel indoor localization algorithm is proposed based on improved support vector machine. The kernel principal component analysis is used to extract useful information and obtain the features which reduce the computing complexity, and then support vector machine is used to construct non-linear mapping localization model between features and physical location, in which parameters are optimized by particle swarm optimization algorithm. The simulation experiments are used to test the performance. The results show that the pro-posed algorithm has improved localization precision and efficiency for indoor localization.

关键词

室内定位/支持向量机/核主成分分析/粒子群优化算法

Key words

indoor localization/support vector machine/kernel principal component analysis/particle swarm optimiza-tion algorithm

分类

信息技术与安全科学

引用本文复制引用

丁雪芳,王琪..基于改进支持向量机的Wi-Fi室内定位算法[J].计算机工程与应用,2016,52(6):90-93,4.

基金项目

陕西省教育厅项目(No.20130031312)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文