| 注册
首页|期刊导航|计算机工程与应用|基于SVM主动学习的音乐分类

基于SVM主动学习的音乐分类

邵曦 姚磊

计算机工程与应用2016,Vol.52Issue(6):127-133,7.
计算机工程与应用2016,Vol.52Issue(6):127-133,7.DOI:10.3778/j.issn.1002-8331.1405-0097

基于SVM主动学习的音乐分类

Music classification based on SVM active learning

邵曦 1姚磊1

作者信息

  • 1. 南京邮电大学 通信与信息工程学院,南京 210003
  • 折叠

摘要

Abstract

An improved SVM(Support Vector Machine)active learning method is proposed. By providing the user with the most informative samples which are put into training set through several iterations, the cost of manually labelled samples can be greatly reduced. In the experiment, to evaluate the performance of the classifier, it classifies 801 songs according to five kinds of genres(including dance, lyric, jazz, folk, rock), and verifies the effectiveness of SVM active learning in two aspects which are the accuracy convergence rate and the number of samples need to be labelled to achieve the same accuracy.

关键词

支持向量机/主动学习/音乐分类

Key words

Support Vector Machine(SVM)/active learning/music classification

分类

信息技术与安全科学

引用本文复制引用

邵曦,姚磊..基于SVM主动学习的音乐分类[J].计算机工程与应用,2016,52(6):127-133,7.

基金项目

国家自然科学基金(No.60902065)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文