| 注册
首页|期刊导航|计算机应用与软件|基于话题翻译模型的双语文本纠错

基于话题翻译模型的双语文本纠错

陈欢 张奇

计算机应用与软件2016,Vol.33Issue(3):284-287,4.
计算机应用与软件2016,Vol.33Issue(3):284-287,4.DOI:10.3969/j.issn.1000-386x.2016.03.067

基于话题翻译模型的双语文本纠错

TOPICS TRANSLATION MODEL-BASED BILINGUAL TEXT ERRORS CORRECTION

陈欢 1张奇1

作者信息

  • 1. 复旦大学计算机科学技术学院 上海 210000
  • 折叠

摘要

Abstract

Along with the globalisation of information in recent years,multilingual mixing phenomena have become increasingly popular in social networks texts.It is quite common in Chinese texts that other languages are mixed.Since most of the existing natural language processing algorithm is the monolingual task-based,the multilingual mixed text can’t be well processed,therefore it is crucial to pre-process the text before carrying out other natural language processing tasks.For the lack of the corpus of bilingual alignment in network text semantic space,we proposed a topics translation model-based method,it calculates the probability of bilingual alignment of network text semantic space using the corpus in different semantic spaces,then incorporates neural network language model to translate the English in mixed network text to corresponding Chinese text.The experiment was set on a manual labelled test corpus.Experimental result indicated that through different comparative experiments it was proved that the proposed approach was effective and was able to improve translation accuracy.

关键词

网络文本/话题翻译模型/神经网络语言模型

Key words

Network text/Topics translation model/Neural network language model

分类

信息技术与安全科学

引用本文复制引用

陈欢,张奇..基于话题翻译模型的双语文本纠错[J].计算机应用与软件,2016,33(3):284-287,4.

基金项目

陈欢,硕士,主研领域自然语言处理,机器学习。张奇,副教授。 ()

计算机应用与软件

OACSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文