| 注册
首页|期刊导航|智能系统学报|一种改进的自适应快速AF-DBSCAN聚类算法

一种改进的自适应快速AF-DBSCAN聚类算法

周治平 王杰锋 朱书伟 孙子文

智能系统学报2016,Vol.11Issue(1):93-98,6.
智能系统学报2016,Vol.11Issue(1):93-98,6.DOI:10.11992.tis.201410021

一种改进的自适应快速AF-DBSCAN聚类算法

An improved adaptive and fast AF-DBSCAN clustering algorithm

周治平 1王杰锋 1朱书伟 1孙子文1

作者信息

  • 1. 江南大学 物联网工程学院,江苏 无锡214122
  • 折叠

摘要

Abstract

The density⁃based DBSCAN clustering algorithm can identify clusters with arbitrary shape, however, the choice of the global parameters Eps and MinPts requires manual intervention, the process of regional query is com⁃plex and loses objects easily. Therefore, an improved density clustering algorithm with adaptive parameter for fast regional queries is proposed. Using KNN distribution and mathematical statistical analysis, the optimal global pa⁃rameters Eps and MinPts are adaptively calculated, so as to avoid manual intervention and enable full automation of the clustering process. The regional query is conducted by improving the selection manner of the object, which is represented by a seed and thus avoiding manual intervention, and so the clustering efficiency is effectively in⁃creased. The experiment results looking at density clustering of four typical data sets show that the proposed method effectively improves clustering accuracy by 8.825% and reduces the average time of clustering by 0.92 s.

关键词

密度聚类/DBSCAN/区域查询/全局参数/KNN分布/数学统计分析

Key words

density clustering/DBSCAN/region query/global parameters/KNN distribution/mathematical statis-tics and analysis

分类

信息技术与安全科学

引用本文复制引用

周治平,王杰锋,朱书伟,孙子文..一种改进的自适应快速AF-DBSCAN聚类算法[J].智能系统学报,2016,11(1):93-98,6.

基金项目

国家自然科学基金资助项目(61373126);江苏省产学研联合创新资金-前瞻性联合研究基金资助项目( BY2013015-33). ()

智能系统学报

OA北大核心CSCDCSTPCD

1673-4785

访问量0
|
下载量0
段落导航相关论文