| 注册
首页|期刊导航|杭州师范大学学报(自然科学版)|基于小波变换和 K-means 算法的遥感影像分类

基于小波变换和 K-means 算法的遥感影像分类

纵清华 王志宇 过仲阳 马品

杭州师范大学学报(自然科学版)2016,Vol.15Issue(2):203-207,5.
杭州师范大学学报(自然科学版)2016,Vol.15Issue(2):203-207,5.DOI:10.3969/j.issn.1674-232X.2016.02.015

基于小波变换和 K-means 算法的遥感影像分类

Remote Sensing Image Classification Based on Wavelet Transform and K-means Algorithm

纵清华 1王志宇 1过仲阳 1马品1

作者信息

  • 1. 华东师范大学地理科学学院,上海 200241
  • 折叠

摘要

Abstract

On the basis of studying the K‐means clustering algorithm ,combine wavelet transform is combined with K‐means algorithm for remote sensing image classification to improve the classification accuracy of remote sensing image . Fuxian Lake area in Yuxi city of Yunnan Province is taken as a study area ,combined with the specific circumstances of the area ,the optimal bands combination of remote sensing image is obtained according to the OIF calculation .Through the two‐dimensional wavelet decomposition of various terrain samples and remote sensing image , the sample feature vector is obtained .Using K‐means algorithm with the sample feature vector for classifying the remote sensing image ,the result of image classification is got and the accuracy is verified .Comparing with the classification result using K‐means algorithm simply ,the results show that its overall accuracy and Kappa coefficient are 83 .74% and 0 .7753 respectively ,increasing by 14 .26% ,0 .1697 .Especially the classification accuracy of forest land ,bare land and farmland is greatly improved .

关键词

遥感影像分类/小波变换/K均值算法

Key words

remote sensing image classification/wavelet transform/K-means algorithm

分类

计算机与自动化

引用本文复制引用

纵清华,王志宇,过仲阳,马品..基于小波变换和 K-means 算法的遥感影像分类[J].杭州师范大学学报(自然科学版),2016,15(2):203-207,5.

基金项目

国家自然科学基金项目(J1310028). ()

杭州师范大学学报(自然科学版)

OACSTPCD

1674-232X

访问量0
|
下载量0
段落导航相关论文