| 注册
首页|期刊导航|计算机科学与探索|面向多视角数据的极大熵聚类算法

面向多视角数据的极大熵聚类算法

张丹丹 邓赵红 王士同

计算机科学与探索2016,Vol.10Issue(4):554-564,11.
计算机科学与探索2016,Vol.10Issue(4):554-564,11.DOI:10.3778/j.issn.1673-9418.1505041

面向多视角数据的极大熵聚类算法

Maximum Entropy Clustering Algorithm for Multi-View Data

张丹丹 1邓赵红 1王士同1

作者信息

  • 1. 江南大学 数字媒体学院,江苏 无锡 214122
  • 折叠

摘要

Abstract

Currently, the maximum entropy clustering (MEC) merges the multi-view samples to process the multi-view clustering task. However, this will damage the independence of each view, and affect the final partition results. Aiming at this problem, this paper proposes a multi-view collaborative partition maximum entropy clustering (CoMEC) algorithm, which joins a constraint to coordinate each perspective space partition, to make each view in a separate clus-tering process consider the influence of other views. Then this paper proposes the enhanced weighted view version called W-CoMEC by identifying the importance of each view. Finally this paper applies the geometric average integra-tion strategy to obtain the global partition results. The experimental results on a synthetic multi-view dataset and several UCI real-world multi-view datasets show that the proposed algorithm outperforms or is at least comparable to the existing clustering technology in dealing with multi-view clustering task.

关键词

/多视角聚类/划分/权值/集成策略/UCI数据集

Key words

entropy/multi-view clustering/partition/weight/integration strategy/UCI dataset

分类

计算机与自动化

引用本文复制引用

张丹丹,邓赵红,王士同..面向多视角数据的极大熵聚类算法[J].计算机科学与探索,2016,10(4):554-564,11.

基金项目

The National Natural Science Foundation of China under Grant No.61170122(国家自然科学基金) (国家自然科学基金)

the New Century Excellent Tal-ent Foundation from MOE of China under Grant No. NCET-12-0882(教育部新世纪优秀人才支持计划) (教育部新世纪优秀人才支持计划)

计算机科学与探索

OA北大核心CSCDCSTPCD

1673-9418

访问量0
|
下载量0
段落导航相关论文