| 注册
首页|期刊导航|科技广场|双概率原对偶遗传算法与蚁群算法的融合研究

双概率原对偶遗传算法与蚁群算法的融合研究

钟海萍 张京友 吴初新

科技广场Issue(1):14-18,5.
科技广场Issue(1):14-18,5.

双概率原对偶遗传算法与蚁群算法的融合研究

Combination of Double-Probability Primal-Dual Genetic Algorithm and Ant Algorithm. Computer Engineering and Applications

钟海萍 1张京友 2吴初新1

作者信息

  • 1. 南昌师范高等专科学校自然科学系,江西南昌330103
  • 2. 重庆三峡学院数学与统计学院,重庆404000
  • 折叠

摘要

Abstract

A new improvement of primal-dual Genetic Algorithm that its gene has a variety of probability, called Double-Probability Primal-Dual Genetic algorithm(DPPDGA), is presented. It improves the diversity of population and the ability of global searching quickly, but it cannot make use of system feedback information that it iterates redundantly. Max-Min Ant algorithm(MMAS)can make full use of system feedback information and seeks the best result by updating the pheromone. But the efficiency is restricted due to the lack of initial pheromone. A new combination of algorithms of DPPDGA and MMAS has been put forward, which utilizes the characteristics of the two algorithms. The MATLAB simulations show the new algorithm is more efficient, more stable and more precise.

关键词

双概率/原对偶遗传算法/最大最小蚁群算法/融合

Key words

Double-Probability/Primal-Dual Genetic Algorithm/Max-Min Ant Algorithm/Combination

分类

数理科学

引用本文复制引用

钟海萍,张京友,吴初新..双概率原对偶遗传算法与蚁群算法的融合研究[J].科技广场,2016,(1):14-18,5.

基金项目

江西省教育厅科技项目青年项目 ()

科技广场

1671-4792

访问量0
|
下载量0
段落导航相关论文