| 注册
首页|期刊导航|水科学进展|非饱和带有限分析数值模拟的误差分析

非饱和带有限分析数值模拟的误差分析

张在勇 王文科 陈立 王周锋 段磊 安可栋

水科学进展2016,Vol.27Issue(1):70-80,11.
水科学进展2016,Vol.27Issue(1):70-80,11.DOI:10.14042/j.cnki.32.1309.2016.01.008

非饱和带有限分析数值模拟的误差分析

Analysis of errors in finite analytic numerical simulation of flow in unsaturated zone

张在勇 1王文科 1陈立 1王周锋 1段磊 1安可栋1

作者信息

  • 1. 长安大学旱区地下水文与生态效应教育部重点实验室, 陕西 西安 710054
  • 折叠

摘要

Abstract

Numerical methods are often used to solve Richards′equation due to the nonlinearity of the equation. Since Finite Analytic Method ( FAM) can better keep the original physical properties of the Richards′equation, it has been widely used in the field of environmental and agricultural engineering in recent years. Based on different principles, there are two kinds of Finite Analytic Methods, namely local linearization FAM and Kirchhoff transform FAM, to sim-ulate moisture movement in unsaturated zone. To explore the differences of numerical performances between the two kinds of FAMs, we have carried out the following researches:first, an existing analytical solution is used to prelimina-rily validate the two kinds of FAMs. After that, two numerical experiments are conducted to compare the accuracy of two methods. Finally, observed data are used to validate the Kirchhoff transform FAM. Compared to the local lineariza-tion FAM, Kirchhoff transform FAM can better control the calculated error and obtain higher accuracy of numerical so-lutions. Therefore, this study has important significance to improve the theory of FAM, which is applied to simulate unsaturated flow.

关键词

非饱和流/Richard方程/有限分析法/Kirchhoff变换

Key words

unsaturated flow/Richards′equation/finite analytic method/Kirchhoff transform

分类

天文学

引用本文复制引用

张在勇,王文科,陈立,王周锋,段磊,安可栋..非饱和带有限分析数值模拟的误差分析[J].水科学进展,2016,27(1):70-80,11.

基金项目

国家自然科学基金重点基金资助项目(41230314) (41230314)

国家自然科学基金青年科学基金资助项目(41202164) The study is financially supported by the National Natural Science Foundation of China (No. 41230314 (41202164)

No. 41202164) . ()

水科学进展

OA北大核心CSCDCSTPCD

1001-6791

访问量2
|
下载量0
段落导航相关论文