| 注册
首页|期刊导航|计算机技术与发展|基于熵和SVM多分类器的异常流量检测方法

基于熵和SVM多分类器的异常流量检测方法

朱佳佳 陈佳

计算机技术与发展2016,Vol.26Issue(3):31-35,5.
计算机技术与发展2016,Vol.26Issue(3):31-35,5.DOI:10.3969/j.issn.1673-629X.2016.03.008

基于熵和SVM多分类器的异常流量检测方法

An Anomaly Detection Method Based on Entropy and SVM Multi-class Classifier

朱佳佳 1陈佳1

作者信息

  • 1. 北京交通大学 电子信息工程学院,北京 100044
  • 折叠

摘要

Abstract

With the advent of the age of big data,data mining and machine learning methods have gradually replaced the traditional meth-ods of anomaly detection,which have gained more attention. In this paper,a new method of detecting the anomaly traffic based on the in-formation entropy and SVM is proposed. This method transfers anomaly detection problems into the classification of different types of traffic,and uses information entropy to quantify different attributes of network traffic. It puts forward an improved SVM multi-class clas-sifier to classify the entropy-quantified traffic and judges the anomalies accordingly. This method is implemented into a real system and function test is carried out. The results show that the method has a good detection effect for the abnormal traffic of the Internet.

关键词

异常检测/信息熵/一对其余/分类

Key words

anomaly detection/information entropy/one-to-all/classification

分类

信息技术与安全科学

引用本文复制引用

朱佳佳,陈佳..基于熵和SVM多分类器的异常流量检测方法[J].计算机技术与发展,2016,26(3):31-35,5.

基金项目

国家重大专项(2013ZX03006002) (2013ZX03006002)

国家自然科学基金资助项目(61471029) (61471029)

北京市自然基金“面上”项目(4132053) (4132053)

基本科研业务费(2014JBM012) (2014JBM012)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文