| 注册
首页|期刊导航|计算机技术与发展|改进的面向数据稀疏的协同过滤推荐算法

改进的面向数据稀疏的协同过滤推荐算法

高倩 何聚厚

计算机技术与发展2016,Vol.26Issue(3):63-66,4.
计算机技术与发展2016,Vol.26Issue(3):63-66,4.DOI:10.3969/j.issn.1673-629X.2016.03.015

改进的面向数据稀疏的协同过滤推荐算法

An Improved Collaborative Filtering Recommendation Algorithm for Data Sparsity

高倩 1何聚厚2

作者信息

  • 1. 陕西师范大学 计算机科学学院,陕西 西安 710062
  • 2. 陕西师范大学 现代教学技术教育部重点实验室,陕西 西安 710062
  • 折叠

摘要

Abstract

User similarity and nearest neighbor set is two important steps in acollaborative filtering algorithm. The traditional Collaborative Filtering ( CF) computes user similarity only relying on user rating and finds K neighbors as nearest neighbor to produce recommendation for users,but in the case of sparse data,only relying on user rating calculation makes the recommendation effect inaccurate. To solve the problems,an improved collaborative filtering recommendation algorithm for data sparsity is proposed,which introduces the similarity of user attributes and user interest,combined with traditional user rating similarity to compute similarity between users. The weights of three is adjusted through several experiments,and the dynamic method is used to search the user’ s nearest neighbor to recommend suitable i-tems for users,in order to alleviate user data sparsity problem. Experimental results show that this method can make full use of all kinds of users’ data information,improving the accuracy of predicted ratings and quality of recommendation.

关键词

用户相似性/属性/兴趣/动态/数据稀疏性

Key words

user similarity/attribute/interest/dynamic/data sparsity

分类

信息技术与安全科学

引用本文复制引用

高倩,何聚厚..改进的面向数据稀疏的协同过滤推荐算法[J].计算机技术与发展,2016,26(3):63-66,4.

基金项目

中央高校基本科研业务费专项资金资助项目(GK201002028,GK201101001) (GK201002028,GK201101001)

陕西师范大学学习科学交叉学科培育计划资助项目 ()

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文