| 注册
首页|期刊导航|自动化学报|基于局部与非局部线性判别分析和高斯混合模型动态集成的晶圆表面缺陷探测与识别

基于局部与非局部线性判别分析和高斯混合模型动态集成的晶圆表面缺陷探测与识别

余建波 卢笑蕾 宗卫周

自动化学报2016,Vol.42Issue(1):47-59,13.
自动化学报2016,Vol.42Issue(1):47-59,13.DOI:10.16383/j.aas.2016.c150311

基于局部与非局部线性判别分析和高斯混合模型动态集成的晶圆表面缺陷探测与识别

Wafer Defect Detection and Recognition Based on Local and Nonlocal Linear Discriminant Analysis and Dynamic Ensemble of Gaussian Mixture Models

余建波 1卢笑蕾 1宗卫周1

作者信息

  • 1. 同济大学机械与能源工程学院 上海 201800
  • 折叠

摘要

关键词

半导体制造/晶圆缺陷/模式识别/流形学习/高斯混合模型

Key words

Semiconductor manufacturing/wafer defect/pattern recognition/manifold learning/Gaussian mixture model (GMM)

引用本文复制引用

余建波,卢笑蕾,宗卫周..基于局部与非局部线性判别分析和高斯混合模型动态集成的晶圆表面缺陷探测与识别[J].自动化学报,2016,42(1):47-59,13.

基金项目

国家自然科学基金项目(51375290,71001060),上海市教育委员会科研创新项目(13YZ002),中央高校基本科研业务费专项资金资助 (51375290,71001060)

Supported by National Natural Science Foundation of China (51375290,71001060),Innovation Program of Shanghai Municipal Education Commission (13YZ002),the Fundamental Research Funds for the Central Universities (51375290,71001060)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文