| 注册
首页|期刊导航|传感技术学报|基于蚁群粒子群混合算法与LS-SVM瓦斯涌出量预测

基于蚁群粒子群混合算法与LS-SVM瓦斯涌出量预测

付华 于翔 卢万杰

传感技术学报2016,Vol.29Issue(3):373-377,5.
传感技术学报2016,Vol.29Issue(3):373-377,5.DOI:10.3969/j.issn.1004-1699.2016.03.012

基于蚁群粒子群混合算法与LS-SVM瓦斯涌出量预测

Prediction of Gas Emission Based on Hybrid Algorithm of Ant Colony Particle Swarm Optimization and LS-SVM

付华 1于翔 1卢万杰1

作者信息

  • 1. 辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛125105
  • 折叠

摘要

Abstract

In order to prevent gas disasters effectively and predict mine gas emission,an improved LS-SVM model based on ant colony optimization mixing with particle swarm optimization was presented,which was used to predict nonlinear dynamic gas emission. The regularization C and the Gaussian kernel parameter σof LS-SVM were opti⁃mized by the prediction model of gas emission based on hybrid algorithm of ant colony particle swarm optimization. The model was validated by using the historical data from Zhaogezhuang coal mine in China. The results show that both the maximum and minimum relative errors predicted by the model are 1.05%and 0.28%respectively,and the average is 0.75%. Compared with others,the model has higher generalization ability and predicting precision.

关键词

瓦斯涌出量/非线性动态预测/蚁群算法/粒子群算法/最小二乘支持向量机

Key words

gas emission/nonlinear dynamic prediction/ant colony optimization/particle swarm optimization/least square-support vector machine

分类

信息技术与安全科学

引用本文复制引用

付华,于翔,卢万杰..基于蚁群粒子群混合算法与LS-SVM瓦斯涌出量预测[J].传感技术学报,2016,29(3):373-377,5.

基金项目

国家自然科学基金项目(51274118);辽宁省教育厅基金项目(L2012119);辽宁省科技攻关项目 ()

传感技术学报

OA北大核心CSCDCSTPCD

1004-1699

访问量0
|
下载量0
段落导航相关论文