| 注册
首页|期刊导航|煤田地质与勘探|基于灰熵法的深部煤层瓦斯含量影响因素分析及预测

基于灰熵法的深部煤层瓦斯含量影响因素分析及预测

周鑫隆 汤静 石必明 吕辰

煤田地质与勘探2016,Vol.44Issue(2):19-23,28,6.
煤田地质与勘探2016,Vol.44Issue(2):19-23,28,6.DOI:10.3969/j.issn.1001-1986.2016.02.004

基于灰熵法的深部煤层瓦斯含量影响因素分析及预测

Analysis and forecast of influential factors of gas content in deep coal seam on the basis of the grey entropy

周鑫隆 1汤静 2石必明 2吕辰3

作者信息

  • 1. 宁波工程学院安全工程学院,浙江宁波 315016
  • 2. 安徽理工大学能源与安全学院,安徽淮南232001
  • 3. 煤矿安全高效开采省部共建教育部重点实验室,安徽 淮南232001
  • 折叠

摘要

Abstract

In order to improve the forecast precision of gas content in deep coal seam, taking deep coal seam No.11-2 in Pansan coal mine as example, grey entropy is proposed to research influencing factors of gas content. The GM(1,3), GM(1,4) and GM(1,5) gas content forecasting models are established to select an appropriate model with the highest forecasting precision according to the size of different influencing factors of grey entropy relation degree. The results show that the influencing factors of gas content in deep coal seam No.11-2 are in decreasing order the main fault distance, the buried depth of coal seam, coal seam thickness, the ratio of the sandstone and mudstone in coal seam roof and dip. The forecast precision of GM models is higher than the qualified level. What’s more, the precision of GM(1,4) model reaches the first grade and average relative error is 5.0636%. In conclusion, GM(1,4) model can be adopted to accurately forecast gas content in deep coal seam No.11-2, which provides reliable references for safe and high-efficiency coal mining.

关键词

瓦斯含量/灰熵分析法/预测精度/GM(1,N)模型

Key words

gas content/grey entropy/forecast precision/GM(1,N) model

分类

天文与地球科学

引用本文复制引用

周鑫隆,汤静,石必明,吕辰..基于灰熵法的深部煤层瓦斯含量影响因素分析及预测[J].煤田地质与勘探,2016,44(2):19-23,28,6.

基金项目

宁波工程学院校级科研项目(2015002)@@@@The Scientific Research Project of Ningbo University of Technology(2015002) (2015002)

煤田地质与勘探

OA北大核心CSCDCSTPCD

1001-1986

访问量0
|
下载量0
段落导航相关论文