| 注册
首页|期刊导航|自动化学报|基于多域先验的乳腺超声图像协同分割

基于多域先验的乳腺超声图像协同分割

邵昊阳 张英涛 鲜敏 李致勋 唐降龙

自动化学报2016,Vol.42Issue(4):580-592,13.
自动化学报2016,Vol.42Issue(4):580-592,13.DOI:10.16383/j.aas.2016.c150199

基于多域先验的乳腺超声图像协同分割

Breast Ultrasound Image Co-segmentation by Means of Multiple-domain Knowledge

邵昊阳 1张英涛 1鲜敏 1李致勋 2唐降龙1

作者信息

  • 1. 哈尔滨工业大学计算机科学与技术学院 哈尔滨 150001 中国
  • 2. 犹他州立大学计算机科学系 洛根 UT 84322 美国
  • 折叠

摘要

Abstract

Because of low signal-noise ratio, low contrast and blurry boundaries, breast ultrasound (BUS) image segmen-tation is quite challenging. In this paper, a multiple-domain knowledge based co-segmentation model is proposed for BUS segmentation. It combines spatial and frequency domain prior knowledge and introduces the idea of co-segmentation to segment BUS sequence. First, tumor poses, position and intensity distribution are modeled to constrain the segmentation in the spatial domain, and then the phase feature and zero-crossing feature in the frequency domain. Finally, the BUS sequence segmentation is formulated as a co-segmentation problem. Experimental results show that the proposed method can handle low contrast and hypoechoic BUS images well and segment BUS accurately.

关键词

乳腺超声图像/协同分割/多域先验/计算机辅助诊断

Key words

Breast ultrasound (BUS) images/co-segmentation/multiple-domain knowledge/computer-aided diagnosis (CAD)

引用本文复制引用

邵昊阳,张英涛,鲜敏,李致勋,唐降龙..基于多域先验的乳腺超声图像协同分割[J].自动化学报,2016,42(4):580-592,13.

基金项目

国家自然科学基金(61370162)资助Supported by National Natural Science Foundation of China (61370162) (61370162)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文