基于遗传算法的支持向量机的参数优化OACSTPCD
Parameters Optimization of SVM Based on Genetic Algorithm
支持向量机的性能主要受到核函数的参数和惩罚因子的影响,其中,以高斯核函数作为支持向量机的核函数的应用最为广泛。论文在研究了惩罚参数 C 及高斯核函数参数σ对支持向量机分类性能影响的基础上,利用网格搜索法和遗传算法对基于 RBF 核的 SVM 进行了参数优化,并通过 UCI 数据集进行了验证。实验结果显示,遗传算法相较于网格搜索算法具有更快的搜索速度,在实际运用中更加高效。
The performance of SVM is mainly affected by the kernel function parameters and penalty parameter .SVM with RBF kernel function is the most widely applications .Using genetic algorithm to select optimum parameter ,the paper mainly studies the performance of SVM with penalty parameter C and RBF kernel function parameter σ .Comparing grid search with genetic algorithm for optimum parameter to SVM based on RBF kernel function in experimental results…查看全部>>
曹路;欧阳效源
五邑大学信息工程学院 江门 529020 中山大学信息科学与技术学院 广州 510006
信息技术与安全科学
支持向量机核函数参数遗传算法
SVMkernel functionparametergenetic algorithm
《计算机与数字工程》 2016 (4)
575-577,595,4
2014年五邑大学青年基金(编号2014zk10);2015五邑大学青年基金(编号2015zk11);2015年江门市科技计划项目(编号201501003001556)资助。
评论