| 注册
首页|期刊导航|南京理工大学学报(自然科学版)|基于GRNN观测器的液压作动器系统自适应故障检测

基于GRNN观测器的液压作动器系统自适应故障检测

周博 吕琛 王轩 田野 秦维力

南京理工大学学报(自然科学版)2016,Vol.40Issue(2):149-155,7.
南京理工大学学报(自然科学版)2016,Vol.40Issue(2):149-155,7.DOI:10.14177/j.cnki.32-1397n.2016.40.02.004

基于GRNN观测器的液压作动器系统自适应故障检测

Adaptive fault detection based on GRNN observer for hydraulic actuator system

周博 1吕琛 1王轩 2田野 1秦维力1

作者信息

  • 1. 北京航空航天大学 可靠性与系统工程学院,北京100191
  • 2. 北京航空航天大学 可靠性与环境工程技术重点实验室,北京100191
  • 折叠

摘要

Abstract

In view of that the technology detecting the fault of the hydraulic actuator systems using observer is still limited,an adaptive failure detection method based on the general regression neural network(GRNN) observer for the hydraulic actuator system is presented here. The faster learning speed of the GRNN neural network makes training much more efficient. Because of the influence of environmental noise and random interference,the adaptive threshold is introduced to reduce the false alarm rate of detection. The data of the hydraulic actuator system in normal operation is used to train the neural network,then the trained neural network for the diagnosis of the collected data is used to judge whether the hydraulic actuator system fails. The three typical types of faults of the hydraulic actuator system are used to verify the effectiveness of this method. The experimental analysis results show that the proposed method can detect the fault condition of the hydraulic actuator system effec-tively.

关键词

液压作动器/广义回归神经网络/观测器/自适应故障检测

Key words

hydraulic actuators/general regression neural network/observers/adaptive fault detection

分类

信息技术与安全科学

引用本文复制引用

周博,吕琛,王轩,田野,秦维力..基于GRNN观测器的液压作动器系统自适应故障检测[J].南京理工大学学报(自然科学版),2016,40(2):149-155,7.

基金项目

国防技术基础项目(Z132013B002) (Z132013B002)

南京理工大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1005-9830

访问量0
|
下载量0
段落导航相关论文